
8
FOUNDATION FOR COMPARING
DATA GRIDS

In this chapter we will itemize the key points of comparison of various data grid

implementations so as to provide the reader with a methodology for selecting the

best “tool for the job.” Recalling Figure 1.1, the two major areas of comparison

are in the “engine” of the data grid itself and the support for the necessary data man-

agement features required by the business application. The latter includes support

for traditional data management techniques, data management features specific to

the data grid, as well as accessibility to the data grid. It is expected that the

reader understands the traditional data management features such as those supported

by a relational database. The chapters subsequent to this will focus on data manage-

ment features that are unique to a data grid.

CORE ENGINE DETERMINES PERFORMANCE

AND FLEXIBILITY

Data grid architecture and the associated characteristics can vary widely. With many

different options in architecting the data grid, there are two that are most prevalent:

(1) “data replication” versus “data distribution” and (2) “centralized” versus “peer-

to-peer”-based synchronization management. Each of these architectures provides

support for a global or common feature sets as well as unique feature sets. We

will also see that there are “policy”-based data management features for the data

grid’s data distribution/replication and for data synchronization. The policy-based

73

Distributed Data Management for Grid Computing, by Michael Di Stefano
Copyright# 2005 John Wiley & Sons, Inc.



data management features can be supported only if the underlying engines support

the mechanics of those features. For example, if the underlying engine only supports

data replication, then data management policies involving a distributed data scheme

cannot be implemented with that engine. Similarly, the engine must also support the

mechanics for all the data grid management policies, for example, “event notifica-

tion” and not just the management policies for data synchronization and distribution.

The sections that follow highlight the most common data grid architecture and

the associated feature sets.

Replicated versus Distributed

Replication-based architectures rely on a duplicating cache across engines that

guarantees that any data modified in one cache are shared across all members.

This allows for total cache synchronization regardless of where the data modifi-

cations occurred. The common features of replication-based architecture are a

high degree of reliability and data integrity since the data resides on many nodes

but at the cost of scaling and performance due to data concurrency across the

nodes of the data grid. The replication schema is typically achieved through

levels of reliability built on top of the multicast or broadcast protocols.

The distribution-based architecture of the data grid, on the other hand, tends to

share data on a peer-to-peer (P2P)-oriented nature. The advantage of such archi-

tecture over the replicated architecture is greater scalability since all the data

are not replicated across all nodes of the data grid. One way to visualize this is

to compare data distribution to how a RAID (redundant array of inexpensive

disks) device “stripes” data across the disk array. Data distribution involves strip-

ing a piece of data across a number of the physical nodes of the data grid. These

nodes are a subset of the total nodes in the data grid and will be considered as

peers to each other for data update, distribution, and access. As does a RAID

device, this method of data distribution yields an upper bound of available data

grid storage capacity solely as a limit of the number of physical nodes to the

data grid. (Conversely, in a replicated engine, the upper bound of data grid storage

capacity is limited to the physical node in the data grid with the least physical

capacity.)

The disadvantage of such architecture is data reliability and data integrity. Even

though the distribution-based architectures does not replicate the data completely,

some degree of replication is achieved, thus yielding a level of resilience to failure.

If a piece of data is distributed or “stripped” across 10 of the 100 nodes of the data

grid, for example, then that data are resilient if at least one of those nodes remains

operational. Should all 10 of those nodes fail while the other 90 remain operational,

then that piece of data is lost. The ratio of nodes to stripe a piece of data across is

managed by the data management policies described below. Adjusting this ratio

of nodes to stripe or “replicate” a piece of data across to the total number of

nodes in the data grid will determine the level of resilience of the data grid for

that piece of data.

74 FOUNDATION FOR COMPARING DATA GRIDS



Centralized versus Peer-to-Peer Synchronization

The implementation of an engine of a data grid will follow one of two general archi-

tectures (distributed or replicated) as it relates to how it physically manages data

integrity across the nodes. There is a centralized manager for data integrity

among the nodes of a data grid as well as for synchronizing data in and out of the

data grid with external data sources. The second method employs a decentralized

manager for data integrity. In this approach, only those nodes of a data grid that

have a piece of data stored locally in it will be involved in managing the integrity

of that data among themselves. Drawing from the example in distribution engines,

if a distributed data engine also supports a P2P synchronization implementation,

then only those 10 nodes on which a piece of data resides will be involved in any

transactional operation for that piece of data. The other 90 nodes are free to go

about supporting other usage requests made on the data grid.

ACCESS TO THE DATA GRID

Access to the data grid must support methods similar to those found in traditional

data management tools. There needs to be a programmatic API set as well as

some method to query the data grid through a string-based query, and finally

there needs to be a management interface for the data grid as a system. These

topics are addressed in more detail in Chapter 20. However, when comparing

which data grid is best suited for your purposes, you must consider the following:

. The support of a programmatic API in the languages (Java, Cþþ, C#, etc.) in

which the business applications are implemented. The quality and flexibility of

those APIs are important points of comparison.

. For a string-based access method, one must consider how the data grid will be

integrated into the environment and which class of applications are required to

leverage it. For example, if the business application is Web-oriented, then sup-

port for an XML-based query is more useful than a standard SQL-type access

method.

User-Level APIs

The data grids offer a variety of application-level APIs depending on the vendor

and the type of architecture. All vendors and architectures support a concept of

a data-grid-aware structure; for example, if the data grid engine supports an

“object-oriented” API set, then it will have the concept of a collectable object and

a collection object such as a bag or list. In addition, the APIs support rudimentary

querying, updating, and retrieval of data in and out of the collections of the data

grid. For operational functions, the APIs support a set of both traditional (startup,

shutdown, user and user entitlements, etc.) and data-grid-specific data management

features such as synchronization, distribution, replication, and event notification.

ACCESS TO THE DATA GRID 75



String-Based Interfaces

As straightforward as a programmatic API interfaces are, string-based queries of a

data grid are less clearly defined. In Chapter 20, an argument is posed regarding

which is the best method to use for string-based queries as there currently is no

standard similar to SQL in the relational data models. Is a SQL or SQL-like inter-

face best since the majority of developers are familiar with it as a tool, as well as

its properties and syntax? Or is a more Web Services–like interfaces best, such

as an XML-based interface? The answers to these questions have yet to find a

consensus among technology specialists and the marketplace in general.

SUPPORT FOR TRADITIONAL DATA MANAGEMENT FEATURES

In order for the APIs to support the traditional data management features, they need

to provide capabilities that include querying, indexing, administration, and replica-

tion. These features typically need to be “loosely” available within data grid

products.

The querying feature is typically supported through a proprietary XML interface

that has some of the features available in ANSI-SQL. Since a data query is typically

unstructured or hierarchical data in nature, traditional ANSI-SQL specifications are

not commonly used.

Indexing and reorganization is typically loosely supported in data grids through

both garbage collection and graph transformations. The garbage collection and

graphic transformation allow unstructured data to be formatted, reorganized, and

structured to the requirements of the receiving application.

Data grid administration is currently supported through command-line inter-

faces. Most administration is achieved via modifications to configuration files.

Replication is supported through processes that allow data replication across

engines, database servers, and nodes.

SUPPORT FOR DATA MANAGEMENT FEATURES SPECIFIC

TO GRID COMPUTING

With new technology come new features that are required and the associated data

management specific to that technology. This, too, is also true for the many

unique aspects of data management in a grid environment. Services specific to

data management in grid environments include data regionalization, data synchroni-

zation policy, transactional data policy, coordination of task scheduling to data

locality, event notification policy, and data load policy, which are discussed in the

sections that follow.

. Data Regionalization. Regionalization of data within a grid is a key

performance and management feature that is seldom available within other

76 FOUNDATION FOR COMPARING DATA GRIDS



infrastructures. A data region within a grid is an organization of data that spans

machines and potentially geographies and caters to the needs of the users of that

region. “Region” is the highest level of constructing the data in the data grid.

Region drives the aggregation of the data and the policy instructions regarding

the data. For example, a data region is analogous to the “database” in the rela-

tional model. It contains other structures of data or data schema specific to a line

of business. The management policies of the region will describe the behavior

of the region in order for it to best meet the requirements of the line of business

or “business services” that it supports. The data-grid-specific management

policies are listed below.

. Data Synchronization. Dynamic data synchronization is performed per the

defined management policy. The “data region” definition encompasses the

data synchronization features and enables the control of different types of con-

sistency policies across the data grid. Data synchronization typically falls into

two spectra: strong synchronization and weak synchronization. Strong synchro-

nization policies enforce a tight replication of “like” patterns of data among the

nodes of the data region as well as strictly enforcing the replication policies

among the nodes of the data region. The strong synchronization mechanism

is used when low latency and high consistency are required from the data

grid at the cost of scalability and flexibility. Weak synchronization policies,

on the other hand, enable data to be synchronized on an “as needed” basis

and sometimes not at all. The weak synchronization mechanism allows for

less data consistency but for higher scalability and flexibility.

. Transactional Data Synchronization. Transactional data synchronization is

very important even in the data grid since the ability to recover, commit, roll

back, and the like are important to data integrity. Transactional data policies

fall into basic categories within a data grid: optimistic and pessimistic. One

of the main drivers of the transactionality with external data sources is the trans-

actional features and semantics supported by that external source. The data grid

must support a level of transactionality equivalent to that external source in

order to maintain a quality of service as required by the line of business that

the data region (data grid) supports. Optimistic transactions are typically

implemented with little or no locking and coordination; they are transactions

only in the sense that in a possible conflict situation, an exception is thrown

and the user is notified. Pessimistic transactions are typically multiphase with

the proper locking, unlocking, commit, and rollback that are typical for trans-

actional integrity. The mechanism used is that of XA, which is associated with

the destination, and all transactional management (e.g., all locking) is done

through that destination.

. Data Locality (Data Distribution). The ability to locate and group data depend-

ing on data usage is essential to the data grid from a performance perspective.

Data locality thus can be defined as the clustering of data depending on usage.

This feature, which is specific to the data grid, enables the architectures to

scale significantly better than did previous technologies architectures. The data

DATA MANAGEMENT FEATURES SPECIFIC TO GRID COMPUTING 77



grid implements data locality through two sets of synergistic architectures: (1)

data within a data grid are associated with a locality that pinpoints the exact

resource that owns a primary copy of the data and its neighboring topology

(this information is provided through the APIs to the architecture using the

data grid in order to propagate and distribute work to the particular resource)

and (2) metrics of data usage improve the availability of the data in the data

grid. Data are monitored through a set of metrics, and individual data blocks

can migrate from resource to resource depending on the usage patterns and

history of use.

. Event Notification. The data grid supports a variety of push-based and pull-

based event notification policies, depending on the product and its associated

architecture. In general, event notification is supported around a particular

data type, which can be by region, collection, or individual data object, as

well as a particular transaction type. APIs for event notification involve

either callback handlers or queues, and typically require the handler to be in

the same data region as the event source.

. Data Load/Save. Data loading and data saving is an essential part of the data

grid. Without capability of loading and saving data, any import and export of

data would be haphazard and require custom code development. The data

grid supports the “load and save” feature through a variety of mechanisms,

some coupled with pessimistic transactional support and some without. Trans-

actional load/save mechanisms work by allowing users to specify a block of

code (or in the vocabulary of enterprise information integration, a data adapter)

that would map inbound data to the transaction source and query (load) or

commit (save) within the context of a data transaction. Transactional mechan-

isms are activated at demand time and will complete before any access or

update to data within the grid is allowed. Nontransactional load/save allows

users to specify individual procedures (adapters) to map data into and out of

the data grid. These procedures are executed on data demand but are not

required to complete successfully before any access or updates are permitted.

78 FOUNDATION FOR COMPARING DATA GRIDS


